Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

### [1,2-Bis(diphenylphosphino)ethane]chlorido( $\eta^5$ -pentamethylcyclopentadienyl)iron(II) dichloromethane solvate

#### Ya-ping Ou,\* Dan Feng and Jing-jing Yuan

Key Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail: ouvaping123@126.com

Received 23 June 2010; accepted 6 July 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.047; wR factor = 0.123; data-to-parameter ratio = 17.3.

In the title compound,  $[Fe(C_{10}H_{15})Cl(C_{26}H_{24}P_2)] \cdot CH_2Cl_2$ , the Fe<sup>II</sup> atom is coordinated by two P atoms from a 1,2bis(diphenylphosphino)ethane ligand [Fe-P = 2.2130(7)and 2.2231 (7) Å], a chloride anion [Fe-Cl = 2.3329 (7) Å]and a pentamethylcyclopentadienyl (Cp\*) ligand [Fecentroid(Cp\*) = 1.732(3)Å] in a typical piano-stool geometry. In the crystal structure, the complex and solvent molecules are paired via weak  $C-H \cdot \cdot \cdot Cl$  interactions.

#### **Related literature**

For related structures, see: Tilset et al. (2001); Argouarch et al. (2002). For the preparation of the title compound, see: Roger et al. (1991).



#### **Experimental**

#### Crystal data

| $[Fe(C_{10}H_{15})Cl(C_{26}H_{24}P_{2})] \cdot CH_{2}Cl_{2}$<br>$M_{r} = 709.84$<br>Triclinic, $P\overline{1}$<br>a = 10.3602 (6) Å<br>b = 10.9552 (6) Å<br>c = 17.0781 (10) Å<br>$\alpha = 80.228$ (1)°<br>$\beta = 72.526$ (1)° | $\gamma = 72.363 (1)^{\circ}$<br>$V = 1755.35 (17) \text{ Å}^{3}$<br>Z = 2<br>Mo K $\alpha$ radiation<br>$\mu = 0.77 \text{ mm}^{-1}$<br>T = 298  K<br>$0.16 \times 0.12 \times 0.10 \text{ mm}$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data collection                                                                                                                                                                                                                   |                                                                                                                                                                                                  |
| Bruker SMART APEX<br>diffractometer<br>11390 measured reflections                                                                                                                                                                 | 6799 independent reflections<br>6294 reflections with $I > 2\sigma(I)$<br>$R_{\text{int}} = 0.068$                                                                                               |
| Refinement                                                                                                                                                                                                                        |                                                                                                                                                                                                  |

| $R[F^2 > 2\sigma(F^2)] = 0.047$ | 393 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.123$               | H-atom parameters constrained                              |
| S = 1.08                        | $\Delta \rho_{\rm max} = 0.72 \text{ e } \text{\AA}^{-3}$  |
| 6799 reflections                | $\Delta \rho_{\rm min} = -0.58 \text{ e } \text{\AA}^{-3}$ |
|                                 |                                                            |

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$ | $D-\mathrm{H}$ | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-----------------------------|----------------|-------------------------|--------------|---------------------------|
| $C37-H37A\cdots Cl1^{i}$    | 0.97           | 2.66                    | 3.525 (5)    | 149                       |
| Symmetry code: (i) r -      | 1              |                         |              |                           |

Symmetry code: (i) x - 1, y, z.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors are grateful to Xianggao Meng for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2737).

#### References

- Argouarch, G., Hamon, P., Toupet, L., Hamon, J.-R. & Lapinte, C. (2002). Organometallics 21 1341–1348
- Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Roger, C., Hamon, P., Toupet, L., Rabaa, H., Saillard, J.-Y., Hamon, J.-R. & Lapinte, C. (1991). Organometallics, 10, 1045-1054.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tilset, M., Fjeldahl, I., Hamon, J.-R., Hamon, P., Toupet, L., Saillard, J.-Y., Costuas, K. & Haynes, A. (2001). J. Am. Chem. Soc. 123, 9984-10000.

Acta Cryst. (2010). E66, m921 [doi:10.1107/S1600536810026784]

# $[1,2-Bis(diphenylphosphino)ethane]chlorido(\mathscr{N}^5-pentamethylcyclopentadienyl)iron(II) dichloromethane solvate$

#### Y. Ou, D. Feng and J. Yuan

#### Comment

The compound  $Fe(Cp^*)(dppe)Cl$ , widely applied to many fields of organometallic chemistry, was yielded from the reaction of Fe(dppe)Cl (dppe=1,2-bis(diphenylphosphino)ethane) with LiCp\* (Cp\* =  $\eta$ 5-pentamethylcylopentadienyl) in THF (Roger *et al.*, 1991). Because of the labile character of the Fe—Cl bond, the chlorine atom can be replaced by various groups such as acetonitrile, iodine, methyl and so on.

Herewith we report the crystal structure of the title compound (I) (Fig. 1). The molecule exhibits a pseudooctahedral geometry, similar to that observed in close compounds (Roger *et al.*1991). When Fe<sup>II</sup> was oxidized to Fe<sup>III</sup> (Tilset *et al.*, 2001), the Fe—Cl bond length changed from 2.3329 (7) Å in (I) to 2.237 (1) Å. In addition, as compared with the crystal structure of the Cp\*(dppp)FeCl (dppp = 1,3- bis(diphenylphosphino)propane) (Argouarch *et al.*, 2002), the title compound shows a weak decreasing of the iron C<sub>5</sub>-ring centroid distance of *ca* 0.014 Å, an shortening of *ca* 0.017 Å in the Fe—P bond distances, and the Fe—Cl bond length also shows a decreasing of *ca* 0.013 Å, The major difference between these two structures deals with an decreasing of 7.11° of the P1—Fe—P2 angle in the title compound.

In the crystal structure of (I), the complex and solvent molecules are paired via the weak C—H…Cl interaction (Table 1).

#### Experimental

The title compound was synthesized according to the literature procedure of Roger et al. (1991)

Single crystals suitable for *X*-ray diffraction were prepared by slow evaporation of a solution of the title compound in dichloromethane: n-hexane (1: 10) at room temperature.

#### Refinement

All H atoms were initially located in a difference map, but were constrained to an idealized geometry. Constrained bond lengths and isotropic displacement parameters: (C—H =0.93 Å) and  $U_{iso}(H) = 1.2U_{eq}(C)$  for aromatic H atoms, and (C—H =0.97 Å) and  $U_{iso}(H) = 1.2U_{eq}(C)$  for methylene, and (C—H =0.96 Å) and  $U_{iso}(H) = 1.5U_{eq}(C)$  for methyl.

**Figures** 



Fig. 1. View of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary radius.

### $[1,2-Bis(diphenylphosphino)ethane]chlorido(\eta^{5}-pentamethylcyclopentadienyl)iron(II) dichloromethane solvate$

#### Crystal data

| $[Fe(C_{10}H_{15})Cl(C_{26}H_{24}P_2)]\cdot CH_2Cl_2$ | <i>Z</i> = 2                                                              |
|-------------------------------------------------------|---------------------------------------------------------------------------|
| $M_r = 709.84$                                        | F(000) = 740                                                              |
| Triclinic, <i>P</i> T                                 | $D_{\rm x} = 1.343 {\rm ~Mg~m}^{-3}$                                      |
| Hall symbol: -P 1                                     | Mo K $\alpha$ radiation, $\lambda = 0.71073$ Å                            |
| a = 10.3602 (6) Å                                     | Cell parameters from 7338 reflections                                     |
| b = 10.9552 (6) Å                                     | $\theta = 2.2 - 28.3^{\circ}$                                             |
| c = 17.0781 (10)  Å                                   | $\mu = 0.77 \text{ mm}^{-1}$                                              |
| $\alpha = 80.228 \ (1)^{\circ}$                       | T = 298  K                                                                |
| $\beta = 72.526 (1)^{\circ}$                          | Block, black                                                              |
| $\gamma = 72.363 (1)^{\circ}$                         | $0.16 \times 0.12 \times 0.10 \text{ mm}$                                 |
| $V = 1755.35 (17) \text{ Å}^3$                        |                                                                           |
| Data collection                                       |                                                                           |
| Bruker SMART APEX<br>diffractometer                   | 6294 reflections with $I > 2\sigma(I)$                                    |
| Radiation source: fine-focus sealed tube              | $R_{\rm int} = 0.068$                                                     |
| graphite                                              | $\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$ |
| phi and $\omega$ scans                                | $h = -11 \rightarrow 12$                                                  |
| 11390 measured reflections                            | $k = -13 \rightarrow 13$                                                  |
| 6799 independent reflections                          | $l = -21 \rightarrow 21$                                                  |

#### Refinement

| Refinement on $F^2$             | Primary atom site location: structure-invariant direct methods |
|---------------------------------|----------------------------------------------------------------|
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map           |
| $R[F^2 > 2\sigma(F^2)] = 0.047$ | Hydrogen site location: inferred from neighbouring sites       |
| $wR(F^2) = 0.123$               | H-atom parameters constrained                                  |
| <i>S</i> = 1.08                 | $w = 1/[\sigma^2(F_0^2) + (0.0474P)^2 + 0.9515P]$              |

|                  | where $P = (F_0^2 + 2F_c^2)/3$                             |
|------------------|------------------------------------------------------------|
| 6799 reflections | $(\Delta/\sigma)_{\rm max} = 0.020$                        |
| 393 parameters   | $\Delta \rho_{\text{max}} = 0.72 \text{ e} \text{ Å}^{-3}$ |
| 0 restraints     | $\Delta \rho_{\rm min} = -0.58 \text{ e } \text{\AA}^{-3}$ |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|      | x           | У           | Ζ            | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|------|-------------|-------------|--------------|-------------------------------|
| Fe1  | 0.95385 (3) | 0.37080 (3) | 0.30569 (2)  | 0.03219 (11)                  |
| C1   | 1.0165 (3)  | 0.3967 (3)  | 0.40903 (16) | 0.0479 (6)                    |
| C2   | 0.9207 (3)  | 0.3200 (3)  | 0.43532 (16) | 0.0466 (6)                    |
| C3   | 0.7921 (3)  | 0.3930 (3)  | 0.41626 (17) | 0.0483 (6)                    |
| C4   | 0.8099 (3)  | 0.5155 (3)  | 0.37841 (17) | 0.0481 (6)                    |
| C5   | 0.9498 (3)  | 0.5162 (3)  | 0.37144 (16) | 0.0472 (6)                    |
| C6   | 1.1602 (4)  | 0.3620 (4)  | 0.4222 (2)   | 0.0658 (9)                    |
| H6A  | 1.1535      | 0.3850      | 0.4754       | 0.099*                        |
| H6B  | 1.2178      | 0.4075      | 0.3803       | 0.099*                        |
| H6C  | 1.2014      | 0.2711      | 0.4195       | 0.099*                        |
| C7   | 0.9394 (4)  | 0.1946 (3)  | 0.48748 (19) | 0.0649 (9)                    |
| H7A  | 1.0358      | 0.1455      | 0.4718       | 0.097*                        |
| H7B  | 0.8806      | 0.1473      | 0.4797       | 0.097*                        |
| H7C  | 0.9138      | 0.2106      | 0.5444       | 0.097*                        |
| C8   | 0.6559 (3)  | 0.3552 (4)  | 0.4485 (2)   | 0.0663 (9)                    |
| H8A  | 0.6237      | 0.3590      | 0.5072       | 0.099*                        |
| H8B  | 0.6705      | 0.2693      | 0.4356       | 0.099*                        |
| H8C  | 0.5866      | 0.4134      | 0.4233       | 0.099*                        |
| C9   | 0.6948 (4)  | 0.6308 (3)  | 0.3621 (2)   | 0.0688 (9)                    |
| H9A  | 0.6526      | 0.6776      | 0.4102       | 0.103*                        |
| H9B  | 0.6249      | 0.6030      | 0.3489       | 0.103*                        |
| Н9С  | 0.7334      | 0.6854      | 0.3166       | 0.103*                        |
| C10  | 1.0146 (4)  | 0.6262 (3)  | 0.3375 (2)   | 0.0682 (9)                    |
| H10A | 0.9560      | 0.6900      | 0.3078       | 0.102*                        |
| H10B | 1.1059      | 0.5952      | 0.3009       | 0.102*                        |
| H10C | 1.0233      | 0.6635      | 0.3819       | 0.102*                        |
| C11  | 0.9552 (3)  | 0.6064 (2)  | 0.13781 (16) | 0.0417 (6)                    |
| C12  | 1.0955 (3)  | 0.5985 (3)  | 0.09845 (18) | 0.0500 (7)                    |
|      |             |             |              |                               |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| H12  | 1.1617     | 0.5190      | 0.0966       | 0.060*      |
|------|------------|-------------|--------------|-------------|
| C13  | 1.1379 (4) | 0.7081 (4)  | 0.0619 (2)   | 0.0665 (9)  |
| H13  | 1.2319     | 0.7016      | 0.0351       | 0.080*      |
| C14  | 1.0417 (5) | 0.8257 (4)  | 0.0651 (2)   | 0.0736 (11) |
| H14  | 1.0706     | 0.8990      | 0.0408       | 0.088*      |
| C15  | 0.9037 (5) | 0.8359 (3)  | 0.1037 (3)   | 0.0747 (11) |
| H15  | 0.8386     | 0.9160      | 0.1053       | 0.090*      |
| C16  | 0.8595 (4) | 0.7265 (3)  | 0.1408 (2)   | 0.0595 (8)  |
| H16  | 0.7653     | 0.7343      | 0.1676       | 0.071*      |
| C17  | 0.7250 (3) | 0.4944 (2)  | 0.17511 (18) | 0.0435 (6)  |
| C18  | 0.6963 (3) | 0.5441 (3)  | 0.1002 (2)   | 0.0582 (8)  |
| H18  | 0.7644     | 0.5715      | 0.0575       | 0.070*      |
| C19  | 0.5669 (4) | 0.5535 (3)  | 0.0881 (3)   | 0.0714 (10) |
| H19  | 0.5488     | 0.5862      | 0.0373       | 0.086*      |
| C20  | 0.4666 (4) | 0.5148 (3)  | 0.1508 (3)   | 0.0737 (11) |
| H20  | 0.3798     | 0.5214      | 0.1427       | 0.088*      |
| C21  | 0.4916 (3) | 0.4668 (3)  | 0.2249 (3)   | 0.0715 (10) |
| H21  | 0.4223     | 0.4401      | 0.2671       | 0.086*      |
| C22  | 0.6206 (3) | 0.4571 (3)  | 0.2380 (2)   | 0.0547 (7)  |
| H22  | 0.6367     | 0.4255      | 0.2893       | 0.066*      |
| C23  | 0.9982 (3) | 0.3413 (2)  | 0.11234 (15) | 0.0382 (5)  |
| H23A | 0.9669     | 0.3684      | 0.0625       | 0.046*      |
| H23B | 1.0982     | 0.3329      | 0.0983       | 0.046*      |
| C24  | 0.9683 (3) | 0.2132 (3)  | 0.15037 (16) | 0.0445 (6)  |
| H24A | 1.0406     | 0.1439      | 0.1215       | 0.053*      |
| H24B | 0.8788     | 0.2115      | 0.1442       | 0.053*      |
| C25  | 0.8213 (3) | 0.1078 (2)  | 0.30821 (17) | 0.0416 (6)  |
| C26  | 0.6979 (3) | 0.1437 (3)  | 0.2836 (2)   | 0.0568 (8)  |
| H26  | 0.6890     | 0.2043      | 0.2389       | 0.068*      |
| C27  | 0.5875 (4) | 0.0900 (4)  | 0.3249 (3)   | 0.0744 (10) |
| H27  | 0.5050     | 0.1154      | 0.3082       | 0.089*      |
| C28  | 0.6002 (4) | -0.0003 (4) | 0.3904 (3)   | 0.0781 (11) |
| H28  | 0.5259     | -0.0353     | 0.4185       | 0.094*      |
| C29  | 0.7222 (4) | -0.0387 (4) | 0.4142 (2)   | 0.0707 (10) |
| H29  | 0.7314     | -0.1015     | 0.4578       | 0.085*      |
| C30  | 0.8313 (3) | 0.0146 (3)  | 0.3742 (2)   | 0.0545 (7)  |
| H30  | 0.9133     | -0.0120     | 0.3915       | 0.065*      |
| C31  | 1.1146 (3) | 0.0457 (2)  | 0.26583 (17) | 0.0417 (6)  |
| C32  | 1.1362 (3) | -0.0595 (3) | 0.2243 (2)   | 0.0578 (8)  |
| H32  | 1.0754     | -0.0576     | 0.1934       | 0.069*      |
| C33  | 1.2464 (4) | -0.1675 (3) | 0.2278 (3)   | 0.0730 (10) |
| H33  | 1.2595     | -0.2372     | 0.1991       | 0.088*      |
| C34  | 1.3360 (4) | -0.1718 (3) | 0.2733 (3)   | 0.0782 (11) |
| H34  | 1.4112     | -0.2439     | 0.2750       | 0.094*      |
| C35  | 1.3147 (4) | -0.0698 (3) | 0.3163 (3)   | 0.0725 (11) |
| H35  | 1.3741     | -0.0741     | 0.3487       | 0.087*      |
| C36  | 1.2052 (3) | 0.0403 (3)  | 0.3121 (2)   | 0.0530(7)   |
| H36  | 1.1932     | 0.1101      | 0.3404       | 0.064*      |
| C37  | 0.4319 (4) | 0.1030 (4)  | 0.1072 (3)   | 0.0876 (13) |
|      | × /        | · /         | × /          | · /         |

| H37A | 0.3642       | 0.1389       | 0.1563       | 0.105*       |
|------|--------------|--------------|--------------|--------------|
| H37B | 0.4579       | 0.0102       | 0.1181       | 0.105*       |
| Cl1  | 1.18883 (6)  | 0.34236 (6)  | 0.23193 (4)  | 0.04042 (15) |
| Cl2  | 0.58023 (17) | 0.15815 (17) | 0.08710 (12) | 0.1323 (5)   |
| C13  | 0.35420 (14) | 0.14422 (14) | 0.02585 (10) | 0.1191 (5)   |
| P1   | 0.90294 (6)  | 0.46011 (6)  | 0.18851 (4)  | 0.03401 (15) |
| P2   | 0.96362 (7)  | 0.18735 (6)  | 0.26212 (4)  | 0.03444 (15) |
|      |              |              |              |              |

Atomic displacement parameters  $(\text{\AA}^2)$ 

|     | $U^{11}$    | $U^{22}$     | $U^{33}$     | $U^{12}$      | $U^{13}$      | $U^{23}$      |
|-----|-------------|--------------|--------------|---------------|---------------|---------------|
| Fe1 | 0.0365 (2)  | 0.03331 (19) | 0.02797 (18) | -0.01183 (14) | -0.00562 (14) | -0.00660 (13) |
| C1  | 0.0632 (17) | 0.0583 (16)  | 0.0295 (13)  | -0.0246 (14)  | -0.0098 (12)  | -0.0123 (11)  |
| C2  | 0.0634 (17) | 0.0497 (15)  | 0.0282 (12)  | -0.0205 (13)  | -0.0068 (12)  | -0.0074 (11)  |
| C3  | 0.0532 (16) | 0.0529 (15)  | 0.0355 (14)  | -0.0193 (13)  | 0.0043 (12)   | -0.0151 (11)  |
| C4  | 0.0552 (16) | 0.0436 (14)  | 0.0383 (14)  | -0.0109 (12)  | 0.0023 (12)   | -0.0161 (11)  |
| C5  | 0.0670 (18) | 0.0444 (14)  | 0.0345 (13)  | -0.0241 (13)  | -0.0047 (12)  | -0.0142 (11)  |
| C6  | 0.075 (2)   | 0.092 (2)    | 0.0468 (17)  | -0.0333 (19)  | -0.0251 (16)  | -0.0113 (16)  |
| C7  | 0.095 (3)   | 0.067 (2)    | 0.0370 (15)  | -0.0325 (18)  | -0.0165 (16)  | 0.0047 (14)   |
| C8  | 0.0575 (19) | 0.077 (2)    | 0.0541 (19)  | -0.0268 (16)  | 0.0121 (15)   | -0.0122 (16)  |
| C9  | 0.071 (2)   | 0.0476 (17)  | 0.071 (2)    | -0.0035 (15)  | 0.0017 (17)   | -0.0203 (15)  |
| C10 | 0.099 (3)   | 0.0580 (18)  | 0.060(2)     | -0.0431 (18)  | -0.0129 (18)  | -0.0131 (15)  |
| C11 | 0.0522 (15) | 0.0394 (13)  | 0.0397 (14)  | -0.0158 (11)  | -0.0208 (12)  | 0.0019 (10)   |
| C12 | 0.0559 (16) | 0.0535 (16)  | 0.0482 (16)  | -0.0233 (13)  | -0.0235 (13)  | 0.0092 (13)   |
| C13 | 0.081 (2)   | 0.076 (2)    | 0.061 (2)    | -0.0483 (19)  | -0.0330 (18)  | 0.0204 (17)   |
| C14 | 0.111 (3)   | 0.062 (2)    | 0.071 (2)    | -0.051 (2)    | -0.045 (2)    | 0.0202 (17)   |
| C15 | 0.105 (3)   | 0.0415 (17)  | 0.084 (3)    | -0.0155 (18)  | -0.044 (2)    | 0.0050 (16)   |
| C16 | 0.068 (2)   | 0.0417 (15)  | 0.070 (2)    | -0.0116 (14)  | -0.0242 (17)  | -0.0009 (14)  |
| C17 | 0.0343 (13) | 0.0403 (13)  | 0.0580 (17)  | -0.0060 (10)  | -0.0172 (12)  | -0.0079 (12)  |
| C18 | 0.0499 (16) | 0.0641 (19)  | 0.064 (2)    | -0.0121 (14)  | -0.0249 (15)  | -0.0021 (15)  |
| C19 | 0.063 (2)   | 0.070 (2)    | 0.094 (3)    | -0.0097 (17)  | -0.048 (2)    | -0.0045 (19)  |
| C20 | 0.0471 (18) | 0.061 (2)    | 0.122 (4)    | -0.0085 (15)  | -0.040 (2)    | -0.011 (2)    |
| C21 | 0.0415 (16) | 0.066 (2)    | 0.104 (3)    | -0.0166 (15)  | -0.0137 (18)  | -0.006 (2)    |
| C22 | 0.0405 (15) | 0.0524 (16)  | 0.069 (2)    | -0.0103 (12)  | -0.0128 (14)  | -0.0052 (14)  |
| C23 | 0.0399 (13) | 0.0436 (13)  | 0.0306 (12)  | -0.0076 (10)  | -0.0105 (10)  | -0.0062 (10)  |
| C24 | 0.0586 (16) | 0.0443 (14)  | 0.0364 (13)  | -0.0158 (12)  | -0.0165 (12)  | -0.0083 (11)  |
| C25 | 0.0458 (14) | 0.0364 (12)  | 0.0493 (15)  | -0.0170 (11)  | -0.0153 (12)  | -0.0055 (11)  |
| C26 | 0.0545 (17) | 0.0531 (16)  | 0.072 (2)    | -0.0225 (14)  | -0.0283 (16)  | 0.0048 (15)   |
| C27 | 0.0554 (19) | 0.087 (3)    | 0.096 (3)    | -0.0339 (18)  | -0.0317 (19)  | 0.001 (2)     |
| C28 | 0.074 (2)   | 0.090 (3)    | 0.084 (3)    | -0.054 (2)    | -0.018 (2)    | 0.009 (2)     |
| C29 | 0.081 (2)   | 0.069 (2)    | 0.071 (2)    | -0.0411 (19)  | -0.0255 (19)  | 0.0181 (18)   |
| C30 | 0.0574 (17) | 0.0519 (16)  | 0.0608 (19)  | -0.0227 (14)  | -0.0230 (15)  | 0.0060 (14)   |
| C31 | 0.0419 (13) | 0.0374 (13)  | 0.0477 (15)  | -0.0112 (10)  | -0.0149 (11)  | -0.0020 (11)  |
| C32 | 0.0593 (18) | 0.0441 (15)  | 0.075 (2)    | -0.0039 (13)  | -0.0280 (16)  | -0.0165 (14)  |
| C33 | 0.068 (2)   | 0.0434 (16)  | 0.102 (3)    | 0.0038 (15)   | -0.023 (2)    | -0.0225 (17)  |
| C34 | 0.059 (2)   | 0.0476 (18)  | 0.123 (4)    | -0.0012 (15)  | -0.036 (2)    | 0.001 (2)     |
| C35 | 0.066 (2)   | 0.063 (2)    | 0.104 (3)    | -0.0207 (16)  | -0.054 (2)    | 0.016 (2)     |
| C36 | 0.0641 (18) | 0.0459 (15)  | 0.0601 (18)  | -0.0211 (13)  | -0.0313 (15)  | 0.0047 (13)   |

| C37             | 0.084 (3)     | 0.076 (3)   | 0.075 (3)   | -0.005 (2)  | 0.006 (2)    | -0.012 (2)   |
|-----------------|---------------|-------------|-------------|-------------|--------------|--------------|
| Cl1             | 0.0364 (3)    | 0.0493 (3)  | 0.0372 (3)  | -0.0141 (3) | -0.0090 (2)  | -0.0046 (2)  |
| Cl2             | 0.1170 (11)   | 0.1362 (12) | 0.1477 (15) | -0.0448 (9) | -0.0342 (10) | -0.0046 (10) |
| C13             | 0.0988 (9)    | 0.1187 (10) | 0.1126 (10) | 0.0251 (7)  | -0.0276 (8)  | -0.0385 (8)  |
| P1              | 0.0327 (3)    | 0.0344 (3)  | 0.0348 (3)  | -0.0081 (2) | -0.0093 (2)  | -0.0036 (2)  |
| P2              | 0.0384 (3)    | 0.0325 (3)  | 0.0360 (3)  | -0.0109 (2) | -0.0124 (3)  | -0.0054 (2)  |
|                 |               |             |             |             |              |              |
| Geometric param | neters (Å, °) |             |             |             |              |              |
| Fe1—C5          |               | 2.083 (3)   | C17—        | -C18        | 1.385        | (4)          |
| Fe1—C4          |               | 2.099 (3)   | C17—        | -P1         | 1.843        | (3)          |
| Fe1—C3          |               | 2.107 (3)   | C18—        | -C19        | 1.388        | (4)          |
| Fe1—C2          |               | 2.138 (3)   | C18—        | -H18        | 0.930        | 0            |
| Fe1—C1          |               | 2.141 (3)   | C19—        | -C20        | 1.361        | (6)          |
| Fe1—P1          |               | 2.2130 (7)  | C19—        | -H19        | 0.930        | 0            |
| Fe1—P2          |               | 2.2231 (7)  | C20—        | -C21        | 1.353        | (6)          |
| Fe1—Cl1         |               | 2.3329 (7)  | C20—        | -H20        | 0.930        | 0            |
| C1—C2           |               | 1.415 (4)   | C21—        | -C22        | 1.391        | (4)          |
| C1—C5           |               | 1.427 (4)   | C21—        | -H21        | 0.930        | 0            |
| C1—C6           |               | 1.497 (4)   | C22—        | -H22        | 0.930        | 0            |
| C2—C3           |               | 1.431 (4)   | C23—        | -C24        | 1.523        | (4)          |
| С2—С7           |               | 1.498 (4)   | C23—        | -P1         | 1.840        | (3)          |
| C3—C4           |               | 1.428 (4)   | C23—        | -H23A       | 0.970        | 0            |
| С3—С8           |               | 1.509 (4)   | C23—        | -H23B       | 0.970        | 0            |
| C4—C5           |               | 1.421 (4)   | C24—        | -P2         | 1.869        | (3)          |
| С4—С9           |               | 1.504 (4)   | C24—        | -H24A       | 0.970        | 0            |
| C5—C10          |               | 1.502 (4)   | C24—        | -H24B       | 0.970        | 0            |
| С6—Н6А          |               | 0.9600      | C25—        | -C26        | 1.389        | (4)          |
| C6—H6B          |               | 0.9600      | C25—        | -C30        | 1.393        | (4)          |
| С6—Н6С          |               | 0.9600      | C25—        | -P2         | 1.844        | (3)          |
| C7—H7A          |               | 0.9600      | C26—        | -C27        | 1.391        | (5)          |
| С7—Н7В          |               | 0.9600      | C26—        | -H26        | 0.930        | 0            |
| С7—Н7С          |               | 0.9600      | C27—        | -C28        | 1.371        | (5)          |
| C8—H8A          |               | 0.9600      | C27—        | -H27        | 0.930        | 0            |
| C8—H8B          |               | 0.9600      | C28—        | -C29        | 1.367        | (5)          |
| C8—H8C          |               | 0.9600      | C28—        | -H28        | 0.930        | 0            |
| С9—Н9А          |               | 0.9600      | C29—        | -C30        | 1.374        | (4)          |
| С9—Н9В          |               | 0.9600      | C29—        | -H29        | 0.930        | 0            |
| С9—Н9С          |               | 0.9600      | C30—        | -H30        | 0.930        | 0            |
| C10—H10A        |               | 0.9600      | C31—        | -C36        | 1.380        | (4)          |
| C10—H10B        |               | 0.9600      | C31—        | -C32        | 1.381        | (4)          |
| C10—H10C        |               | 0.9600      | C31—        | -P2         | 1.848        | (3)          |
| C11—C16         |               | 1.385 (4)   | C32—        | -C33        | 1.379        | (4)          |
| C11—C12         |               | 1.389 (4)   | C32—        | -H32        | 0.930        | 0            |
| C11—P1          |               | 1.840 (3)   | C33—        | -C34        | 1.364        | (6)          |
| C12—C13         |               | 1.387 (4)   | C33—        | -Н33        | 0.930        | 0            |
| C12—H12         |               | 0.9300      | C34—        | -C35        | 1.367        | (6)          |
| C13—C14         |               | 1.367 (5)   | C34—        | -H34        | 0.930        | 0            |
| C13—H13         |               | 0.9300      | C35—        | -C36        | 1.392        | (4)          |

| C14—C15    | 1.361 (6)  | С35—Н35       | 0.9300      |
|------------|------------|---------------|-------------|
| C14—H14    | 0.9300     | С36—Н36       | 0.9300      |
| C15—C16    | 1.396 (5)  | C37—Cl2       | 1.737 (5)   |
| С15—Н15    | 0.9300     | C37—Cl3       | 1.739 (5)   |
| C16—H16    | 0.9300     | С37—Н37А      | 0.9700      |
| C17—C22    | 1.382 (4)  | С37—Н37В      | 0.9700      |
| C5—Fe1—C4  | 39.73 (12) | C14—C13—H13   | 119.9       |
| C5—Fe1—C3  | 66.75 (11) | С12—С13—Н13   | 119.9       |
| C4—Fe1—C3  | 39.69 (11) | C15—C14—C13   | 120.2 (3)   |
| C5—Fe1—C2  | 66.10 (11) | C15—C14—H14   | 119.9       |
| C4—Fe1—C2  | 66.01 (11) | C13—C14—H14   | 119.9       |
| C3—Fe1—C2  | 39.39 (11) | C14—C15—C16   | 120.3 (3)   |
| C5—Fe1—C1  | 39.46 (11) | C14—C15—H15   | 119.9       |
| C4—Fe1—C1  | 65.79 (12) | С16—С15—Н15   | 119.9       |
| C3—Fe1—C1  | 65.65 (11) | C11—C16—C15   | 120.4 (3)   |
| C2—Fe1—C1  | 38.61 (11) | С11—С16—Н16   | 119.8       |
| C5—Fe1—P1  | 108.21 (8) | C15—C16—H16   | 119.8       |
| C4—Fe1—P1  | 95.87 (8)  | C22—C17—C18   | 118.4 (3)   |
| C3—Fe1—P1  | 118.90 (9) | C22—C17—P1    | 119.7 (2)   |
| C2—Fe1—P1  | 158.27 (8) | C18—C17—P1    | 121.5 (2)   |
| C1—Fe1—P1  | 145.86 (8) | C17—C18—C19   | 120.7 (3)   |
| C5—Fe1—P2  | 166.77 (8) | C17-C18-H18   | 119.6       |
| C4—Fe1—P2  | 139.69 (8) | C19—C18—H18   | 119.6       |
| C3—Fe1—P2  | 105.83 (8) | C20—C19—C18   | 119.6 (4)   |
| C2—Fe1—P2  | 101.07 (8) | С20—С19—Н19   | 120.2       |
| C1—Fe1—P2  | 128.04 (8) | C18—C19—H19   | 120.2       |
| P1—Fe1—P2  | 84.91 (3)  | C21—C20—C19   | 120.8 (3)   |
| C5—Fe1—Cl1 | 94.68 (8)  | C21—C20—H20   | 119.6       |
| C4—Fe1—Cl1 | 132.57 (8) | C19—C20—H20   | 119.6       |
| C3—Fe1—Cl1 | 151.83 (9) | C20—C21—C22   | 120.2 (3)   |
| C2—Fe1—Cl1 | 114.63 (8) | C20—C21—H21   | 119.9       |
| C1—Fe1—Cl1 | 86.47 (8)  | C22—C21—H21   | 119.9       |
| P1—Fe1—Cl1 | 86.26 (2)  | C17—C22—C21   | 120.2 (3)   |
| P2—Fe1—Cl1 | 87.74 (2)  | C17—C22—H22   | 119.9       |
| C2C1C5     | 108.2 (3)  | C21—C22—H22   | 119.9       |
| C2—C1—C6   | 126.1 (3)  | C24—C23—P1    | 107.85 (17) |
| C5—C1—C6   | 125.6 (3)  | C24—C23—H23A  | 110.1       |
| C2C1Fe1    | 70.55 (15) | Р1—С23—Н23А   | 110.1       |
| C5—C1—Fe1  | 68.08 (15) | С24—С23—Н23В  | 110.1       |
| C6—C1—Fe1  | 129.5 (2)  | P1—C23—H23B   | 110.1       |
| C1—C2—C3   | 108.1 (2)  | H23A—C23—H23B | 108.4       |
| C1—C2—C7   | 126.3 (3)  | C23—C24—P2    | 111.12 (17) |
| C3—C2—C7   | 124.8 (3)  | C23—C24—H24A  | 109.4       |
| C1—C2—Fel  | 70.83 (15) | P2—C24—H24A   | 109.4       |
| C3—C2—Fel  | 69.16 (15) | C23—C24—H24B  | 109.4       |
| C/C2Fe1    | 133.8 (2)  | P2—C24—H24B   | 109.4       |
| C4—C3—C2   | 107.7 (2)  | H24A—C24—H24B | 108.0       |
| C4—C3—C8   | 126.9 (3)  | C26—C25—C30   | 117.7 (3)   |
| C2—C3—C8   | 124.1 (3)  | C26—C25—P2    | 122.4 (2)   |

| C4—C3—Fe1                                            | 69.82 (15) | C30—C25—P2                          | 119.8 (2)         |
|------------------------------------------------------|------------|-------------------------------------|-------------------|
| C2—C3—Fe1                                            | 71.45 (15) | C25—C26—C27                         | 120.8 (3)         |
| C8—C3—Fe1                                            | 134.4 (2)  | С25—С26—Н26                         | 119.6             |
| C5—C4—C3                                             | 108.0 (3)  | С27—С26—Н26                         | 119.6             |
| C5—C4—C9                                             | 125.4 (3)  | C28—C27—C26                         | 120.0 (3)         |
| C3—C4—C9                                             | 125.8 (3)  | С28—С27—Н27                         | 120.0             |
| C5-C4-Fe1                                            | 69.56 (15) | С26—С27—Н27                         | 120.0             |
| C3—C4—Fe1                                            | 70.49 (15) | C29—C28—C27                         | 119.9 (3)         |
| C9—C4—Fe1                                            | 133.3 (2)  | C29—C28—H28                         | 120.1             |
| C4—C5—C1                                             | 107.9 (2)  | C27—C28—H28                         | 120.1             |
| C4—C5—C10                                            | 126.9 (3)  | C28—C29—C30                         | 120.5 (3)         |
| C1—C5—C10                                            | 125.1 (3)  | С28—С29—Н29                         | 119.7             |
| C4—C5—Fe1                                            | 70.71 (15) | С30—С29—Н29                         | 119.7             |
| C1—C5—Fe1                                            | 72.47 (14) | C29—C30—C25                         | 121.1 (3)         |
| C10-C5-Fe1                                           | 126.3 (2)  | С29—С30—Н30                         | 119.4             |
| С1—С6—Н6А                                            | 109.5      | С25—С30—Н30                         | 119.4             |
| С1—С6—Н6В                                            | 109.5      | C36—C31—C32                         | 118.5 (3)         |
| Н6А—С6—Н6В                                           | 109.5      | C36—C31—P2                          | 121.2 (2)         |
| С1—С6—Н6С                                            | 109.5      | $C_{32}$ — $C_{31}$ — $P_{2}$       | 120.3 (2)         |
| Н6А—С6—Н6С                                           | 109.5      | C33—C32—C31                         | 121.3 (3)         |
| H6B—C6—H6C                                           | 109.5      | C33—C32—H32                         | 119.4             |
| С2—С7—Н7А                                            | 109.5      | $C_{31} - C_{32} - H_{32}$          | 119.4             |
| C2—C7—H7B                                            | 109.5      | $C_{34} - C_{33} - C_{32}$          | 119.9 (3)         |
| H7A - C7 - H7B                                       | 109.5      | C34—C33—H33                         | 120.0             |
| $C^2$ — $C^7$ — $H^7C$                               | 109.5      | C32—C33—H33                         | 120.0             |
| H7A - C7 - H7C                                       | 109.5      | $C_{33} - C_{34} - C_{35}$          | 119.8 (3)         |
| H7B - C7 - H7C                                       | 109.5      | $C_{33} - C_{34} - H_{34}$          | 120.1             |
| $C_3 = C_8 = H_8 \Delta$                             | 109.5      | $C_{35} - C_{34} - H_{34}$          | 120.1             |
| $C_3 = C_8 = H_8B$                                   | 109.5      | $C_{34}$ $C_{35}$ $C_{36}$ $C_{36}$ | 120.1<br>120.7(3) |
| H8A = C8 = H8B                                       | 109.5      | $C_{34}$ $C_{35}$ $H_{35}$          | 119.7             |
| $C_3 = C_8 = H_8C$                                   | 109.5      | C36-C35-H35                         | 119.7             |
|                                                      | 109.5      | $C_{31} - C_{36} - C_{35}$          | 119.7             |
|                                                      | 109.5      | $C_{31} - C_{36} - H_{36}$          | 119.9 (3)         |
| CA = C0 = H0A                                        | 109.5      | C35-C36-H36                         | 120.1             |
| $C_{4}$ $C_{9}$ $H_{9}$ $H_{9}$                      | 109.5      | $C_{12} = C_{37} = C_{13}$          | 120.1<br>112.4(2) |
|                                                      | 109.5      | $C_{12} = C_{37} = C_{13}$          | 112.4 (2)         |
| $H_{PA} = C_{P} = H_{PB}$                            | 109.5      | $C_{12} = C_{27} = H_{27A}$         | 109.1             |
|                                                      | 109.5      | $C_{12} C_{27} H_{27} R_{27}$       | 109.1             |
|                                                      | 109.5      | $C_{12} = C_{27} = H_{27}B$         | 109.1             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 109.5      |                                     | 109.1             |
| C5 C10 H10P                                          | 109.5      | H3/A - C3/ - H3/B                   | 107.9             |
|                                                      | 109.5      | $C_{23}$ $P_1$ $C_{17}$             | 103.31(12)        |
| нюд—сто—нтов                                         | 109.5      | $C_{23} - P_{1} - C_{17}$           | 99.30 (12)        |
|                                                      | 109.5      | C11 - P1 - C17                      | 102.04(12)        |
| H10A - C10 - H10C                                    | 109.5      | Cli pi Fel                          | 100.38 (8)        |
|                                                      | 109.3      | C17 = P1 = Fe1                      | 120.12(8)         |
| C10 - C11 - C12                                      | 118.3 (3)  | $C_1/-r_1$ -rel                     | 122.14 (10)       |
| C10 - C11 - P1                                       | 121.9 (2)  | $C_{23}$ $P_{2}$ $C_{31}$           | 98.42 (12)        |
| C12-C11-P1                                           | 119.7 (2)  | $C_{23}$ $P_{2}$ $C_{24}$           | 103.13 (12)       |
| C13—C12—C11                                          | 120.6 (3)  | C31—P2—C24                          | 102.74 (13)       |

| C13—C12—H12                                         | 119.7                     | C25—P2—Fe1                                   | 120.52 (9)   |
|-----------------------------------------------------|---------------------------|----------------------------------------------|--------------|
| C11—C12—H12                                         | 119.7                     | C31—P2—Fe1                                   | 120.06 (9)   |
| C14—C13—C12                                         | 120.2 (3)                 | C24—P2—Fe1                                   | 109.43 (8)   |
| C5—Fe1—C1—C2                                        | 120.0 (2)                 | P2—Fe1—C5—C4                                 | -95.4 (4)    |
| C4—Fe1—C1—C2                                        | 81.30 (18)                | Cl1—Fe1—C5—C4                                | 164.46 (15)  |
| C3—Fe1—C1—C2                                        | 37.57 (17)                | C4—Fe1—C5—C1                                 | 116.9 (2)    |
| P1—Fe1—C1—C2                                        | 143.70 (15)               | C3—Fe1—C5—C1                                 | 79.38 (18)   |
| P2—Fe1—C1—C2                                        | -53.92 (19)               | C2—Fe1—C5—C1                                 | 36.24 (17)   |
| Cl1—Fe1—C1—C2                                       | -138.27 (16)              | P1—Fe1—C5—C1                                 | -166.26 (14) |
| C4—Fe1—C1—C5                                        | -38.69 (17)               | P2—Fe1—C5—C1                                 | 21.4 (5)     |
| C3—Fe1—C1—C5                                        | -82.42 (18)               | Cl1—Fe1—C5—C1                                | -78.66 (16)  |
| C2—Fe1—C1—C5                                        | -120.0 (2)                | C4—Fe1—C5—C10                                | -122.1 (4)   |
| P1—Fe1—C1—C5                                        | 23.7 (2)                  | C3—Fe1—C5—C10                                | -159.6 (3)   |
| P2—Fe1—C1—C5                                        | -173.90 (13)              | C2—Fe1—C5—C10                                | 157.3 (3)    |
| Cl1—Fe1—C1—C5                                       | 101.74 (16)               | C1—Fe1—C5—C10                                | 121.0 (4)    |
| C5—Fe1—C1—C6                                        | -118.8 (3)                | P1—Fe1—C5—C10                                | -45.2 (3)    |
| C4—Fe1—C1—C6                                        | -157.5 (3)                | P2—Fe1—C5—C10                                | 142.4 (3)    |
| C3—Fe1—C1—C6                                        | 158.8 (3)                 | Cl1—Fe1—C5—C10                               | 42.4 (3)     |
| C2—Fe1—C1—C6                                        | 121.2 (3)                 | C16—C11—C12—C13                              | -1.1 (4)     |
| P1—Fe1—C1—C6                                        | -95.1 (3)                 | P1-C11-C12-C13                               | -178.2(2)    |
| P2—Fe1—C1—C6                                        | 67.3 (3)                  | $C_{11} - C_{12} - C_{13} - C_{14}$          | 0.8 (5)      |
| Cl1— $Fe1$ — $C1$ — $C6$                            | -17.0(3)                  | C12—C13—C14—C15                              | -0.5(5)      |
| C5-C1-C2-C3                                         | -1.6(3)                   | C13—C14—C15—C16                              | 0.5 (6)      |
| $C_{6}-C_{1}-C_{2}-C_{3}$                           | 175 4 (3)                 | C12-C11-C16-C15                              | 11(5)        |
| Fe1-C1-C2-C3                                        | -59 37 (18)               | P1-C11-C16-C15                               | 178 1 (3)    |
| $C_{5}-C_{1}-C_{2}-C_{7}$                           | -1714(3)                  | C14-C15-C16-C11                              | -0.8(6)      |
| $C_{6} = C_{1} = C_{2} = C_{7}$                     | 56(5)                     | $C^{22}$ $C^{17}$ $C^{18}$ $C^{19}$          | -14(5)       |
| Fe1-C1-C2-C7                                        | 130.8 (3)                 | P1-C17-C18-C19                               | 171 5 (3)    |
| $C_{5}$ $C_{1}$ $C_{2}$ $E_{1}$                     | 57 78 (18)                | $C_{17} - C_{18} - C_{19} - C_{20}$          | 0.7(5)       |
| C6-C1-C2 Fel                                        | -1253(3)                  | $C_{18}$ $C_{19}$ $C_{20}$ $C_{21}$          | -0.2(6)      |
| $C_{5}$ Fe1 $C_{2}$ $C_{1}$                         | -37.02(17)                | C19 - C20 - C21 - C22                        | 0.2(0)       |
| C4 = Fe1 = C2 = C1                                  | -80.67(19)                | $C_{18} = C_{17} = C_{22} = C_{21}^{-1}$     | 1.6(4)       |
| $C_{3}$ Fe1 $C_{2}$ $C_{1}$                         | -1189(2)                  | P1 = C17 = C22 = C21                         | -1714(3)     |
| $P_1 = F_{e_1} = C_2 = C_1$                         | -1161(2)                  | $C_{20}$ $C_{21}$ $C_{22}$ $C_{21}$ $C_{17}$ | -1.2(5)      |
| $P_{2} = F_{e1} = C_{2} = C_{1}$                    | 139 57 (16)               | $P_1 = C_{23} = C_{24} = P_2$                | -38.7(2)     |
| 12 - 101 - 02 - 01                                  | 159.57 (10)<br>16 96 (18) | 11 - 025 - 024 - 12                          | 14(5)        |
| $C_{5}$ Fe1 $C_{2}$ $C_{3}$                         | 40.90 (10)<br>81 91 (18)  | $P_{2} = C_{25} = C_{26} = C_{27}$           | -173.9(3)    |
| $C_{4}$ = $E_{1}$ = $C_{2}$ = $C_{3}$               | 38 25 (16)                | 12 - 225 - 220 - 227                         | -0.6(6)      |
| $C_{1} = C_{1} = C_{2} = C_{3}$                     | 1180(2)                   | $C_{23} - C_{20} - C_{27} - C_{28}$          | -0.9(7)      |
| $P_1 = P_2 = C_2$                                   | 110.9(2)                  | $C_{20} = C_{21} = C_{23} = C_{23}$          | 0.9(7)       |
| $P_{2} = F_{e1} = C_{2} = C_{3}$                    | -10151(15)                | $C_{27} = C_{28} = C_{29} = C_{30}$          | -0.6(6)      |
| 12 - 12 - 22 - 23                                   | 101.31(13)<br>165.88(14)  | $C_{28} = C_{29} = C_{30} = C_{23}$          | -0.8(5)      |
| $C_{11}$ $-F_{C_{1}}$ $-C_{2}$ $-C_{3}$             | -150.4(4)                 | $C_{20} = C_{23} = C_{30} = C_{29}$          | -0.8(3)      |
| $C_{3}$ $C_{4}$ $E_{2}^{1}$ $C_{2}^{2}$ $C_{7}^{2}$ | 157.4(4)                  | 12 - 23 - 23 - 227                           | -0.7(5)      |
| $C_{4} = 1 C_{1} = C_{2} = C_{1}$                   | 137.0(4)<br>118.7(4)      | $P_2 = C_{31} = C_{32} = C_{33}$             | -1785(3)     |
| $C_{1} = C_{2} = C_{1}$                             | -1224(4)                  | 12 - 031 - 032 - 033                         | 1/0.5 (5)    |
| $P1_Fe1_C2_C7$                                      | 122.4 (4)                 | $C_{31} - C_{32} - C_{33} - C_{34}$          | 1.0 (6)      |
| $P_{1} = P_{0} = C_{1} = C_{2} = C_{1}$             | 121.3(3)                  | $C_{32} = C_{33} = C_{34} = C_{33}$          | -2.1 (6)     |
| $r_2 - r_{c1} - c_2 - c_7$                          | 17.2(3)                   | $C_{22} = C_{24} = C_{25} = C_{30}$          | -2.1(0)      |
| UII—FeI—U2—U/                                       | -/3.4 (3)                 | 132 - 131 - 130 - 133                        | -0.4 (3)     |

| C1—C2—C3—C4   | -0.3 (3)     | P2-C31-C36-C35  | 177.4 (3)    |
|---------------|--------------|-----------------|--------------|
| C7—C2—C3—C4   | 169.7 (3)    | C34—C35—C36—C31 | 1.8 (5)      |
| Fe1—C2—C3—C4  | -60.75 (18)  | C24—C23—P1—C11  | 176.94 (17)  |
| C1—C2—C3—C8   | -168.0 (3)   | C24—C23—P1—C17  | -78.17 (19)  |
| C7—C2—C3—C8   | 2.0 (4)      | C24—C23—P1—Fe1  | 49.45 (18)   |
| Fe1—C2—C3—C8  | 131.6 (3)    | C16—C11—P1—C23  | 137.7 (2)    |
| C1—C2—C3—Fe1  | 60.42 (18)   | C12—C11—P1—C23  | -45.3 (2)    |
| C7—C2—C3—Fe1  | -129.6 (3)   | C16—C11—P1—C17  | 34.9 (3)     |
| C5—Fe1—C3—C4  | 37.54 (18)   | C12—C11—P1—C17  | -148.1 (2)   |
| C2—Fe1—C3—C4  | 117.7 (2)    | C16—C11—P1—Fe1  | -103.9 (2)   |
| C1—Fe1—C3—C4  | 80.82 (19)   | C12-C11-P1-Fe1  | 73.0 (2)     |
| P1—Fe1—C3—C4  | -61.16 (19)  | C22—C17—P1—C23  | 112.4 (2)    |
| P2—Fe1—C3—C4  | -154.09 (16) | C18—C17—P1—C23  | -60.4 (3)    |
| Cl1—Fe1—C3—C4 | 89.7 (2)     | C22—C17—P1—C11  | -141.5 (2)   |
| C5—Fe1—C3—C2  | -80.12 (18)  | C18—C17—P1—C11  | 45.7 (3)     |
| C4—Fe1—C3—C2  | -117.7 (2)   | C22-C17-P1-Fe1  | -3.8 (3)     |
| C1—Fe1—C3—C2  | -36.84 (16)  | C18-C17-P1-Fe1  | -176.6 (2)   |
| P1—Fe1—C3—C2  | -178.83 (13) | C5—Fe1—P1—C23   | 149.05 (12)  |
| P2—Fe1—C3—C2  | 88.24 (15)   | C4—Fe1—P1—C23   | -172.21 (12) |
| Cl1—Fe1—C3—C2 | -28.0 (3)    | C3—Fe1—P1—C23   | -137.99 (12) |
| C5—Fe1—C3—C8  | 159.9 (4)    | C2—Fe1—P1—C23   | -140.0 (2)   |
| C4—Fe1—C3—C8  | 122.3 (4)    | C1—Fe1—P1—C23   | 133.44 (17)  |
| C2—Fe1—C3—C8  | -120.0 (4)   | P2—Fe1—P1—C23   | -32.71 (9)   |
| C1—Fe1—C3—C8  | -156.8 (4)   | Cl1—Fe1—P1—C23  | 55.35 (9)    |
| P1—Fe1—C3—C8  | 61.2 (3)     | C5—Fe1—P1—C11   | 32.17 (14)   |
| P2—Fe1—C3—C8  | -31.8 (3)    | C4—Fe1—P1—C11   | 70.91 (13)   |
| Cl1—Fe1—C3—C8 | -148.0 (3)   | C3—Fe1—P1—C11   | 105.13 (14)  |
| C2—C3—C4—C5   | 2.1 (3)      | C2—Fe1—P1—C11   | 103.1 (2)    |
| C8—C3—C4—C5   | 169.3 (3)    | C1—Fe1—P1—C11   | 16.57 (18)   |
| Fe1—C3—C4—C5  | -59.66 (18)  | P2—Fe1—P1—C11   | -149.59 (11) |
| C2—C3—C4—C9   | -168.4 (3)   | Cl1—Fe1—P1—C11  | -61.53 (11)  |
| C8—C3—C4—C9   | -1.2 (5)     | C5—Fe1—P1—C17   | -98.31 (13)  |
| Fe1—C3—C4—C9  | 129.8 (3)    | C4—Fe1—P1—C17   | -59.57 (13)  |
| C2—C3—C4—Fe1  | 61.79 (18)   | C3—Fe1—P1—C17   | -25.36 (14)  |
| C8—C3—C4—Fe1  | -131.0 (3)   | C2—Fe1—P1—C17   | -27.4 (2)    |
| C3—Fe1—C4—C5  | 118.9 (2)    | C1—Fe1—P1—C17   | -113.92 (17) |
| C2—Fe1—C4—C5  | 80.90 (18)   | P2—Fe1—P1—C17   | 79.93 (10)   |
| C1—Fe1—C4—C5  | 38.43 (16)   | Cl1—Fe1—P1—C17  | 167.98 (10)  |
| P1—Fe1—C4—C5  | -111.57 (15) | C26—C25—P2—C31  | -144.9 (3)   |
| P2—Fe1—C4—C5  | 159.38 (13)  | C30—C25—P2—C31  | 39.8 (3)     |
| Cl1—Fe1—C4—C5 | -21.3 (2)    | C26—C25—P2—C24  | -39.7 (3)    |
| C5—Fe1—C4—C3  | -118.9 (2)   | C30—C25—P2—C24  | 145.1 (2)    |
| C2—Fe1—C4—C3  | -37.97 (17)  | C26—C25—P2—Fe1  | 82.6 (3)     |
| C1—Fe1—C4—C3  | -80.44 (19)  | C30—C25—P2—Fe1  | -92.6 (2)    |
| P1—Fe1—C4—C3  | 129.56 (16)  | C36—C31—P2—C25  | -117.4 (2)   |
| P2—Fe1—C4—C3  | 40.5 (2)     | C32—C31—P2—C25  | 60.3 (3)     |
| Cl1—Fe1—C4—C3 | -140.13 (15) | C36—C31—P2—C24  | 137.0 (2)    |
| C5—Fe1—C4—C9  | 119.9 (4)    | C32—C31—P2—C24  | -45.3 (3)    |
| C3—Fe1—C4—C9  | -121.3 (4)   | C36—C31—P2—Fe1  | 15.3 (3)     |

| C2—Fe1—C4—C9                  | -159.2 (3)  | C32-C31-P2-Fe1 | -167.0 (2)   |  |
|-------------------------------|-------------|----------------|--------------|--|
| C1—Fe1—C4—C9                  | 158.3 (3)   | C23—C24—P2—C25 | 142.49 (19)  |  |
| P1—Fe1—C4—C9                  | 8.3 (3)     | C23—C24—P2—C31 | -115.57 (19) |  |
| P2—Fe1—C4—C9                  | -80.7 (3)   | C23—C24—P2—Fe1 | 13.1 (2)     |  |
| Cl1—Fe1—C4—C9                 | 98.6 (3)    | C5—Fe1—P2—C25  | 67.0 (4)     |  |
| C3—C4—C5—C1                   | -3.1 (3)    | C4—Fe1—P2—C25  | -12.55 (17)  |  |
| C9—C4—C5—C1                   | 167.4 (3)   | C3—Fe1—P2—C25  | 12.99 (14)   |  |
| Fe1—C4—C5—C1                  | -63.35 (18) | C2—Fe1—P2—C25  | 53.26 (13)   |  |
| C3—C4—C5—C10                  | -178.3 (3)  | C1—Fe1—P2—C25  | 84.18 (14)   |  |
| C9—C4—C5—C10                  | -7.7 (5)    | P1—Fe1—P2—C25  | -105.63 (10) |  |
| Fe1—C4—C5—C10                 | 121.5 (3)   | Cl1—Fe1—P2—C25 | 167.92 (10)  |  |
| C3—C4—C5—Fe1                  | 60.25 (18)  | C5—Fe1—P2—C31  | -55.5 (4)    |  |
| C9—C4—C5—Fe1                  | -129.2 (3)  | C4—Fe1—P2—C31  | -135.06 (16) |  |
| C2-C1-C5-C4                   | 2.9 (3)     | C3—Fe1—P2—C31  | -109.51 (14) |  |
| C6—C1—C5—C4                   | -174.1 (3)  | C2—Fe1—P2—C31  | -69.25 (13)  |  |
| Fe1—C1—C5—C4                  | 62.22 (18)  | C1—Fe1—P2—C31  | -38.32 (15)  |  |
| C2-C1-C5-C10                  | 178.2 (3)   | P1—Fe1—P2—C31  | 131.86 (10)  |  |
| C6—C1—C5—C10                  | 1.2 (4)     | Cl1—Fe1—P2—C31 | 45.42 (10)   |  |
| Fe1—C1—C5—C10                 | -122.5 (3)  | C5—Fe1—P2—C24  | -173.8 (4)   |  |
| C2-C1-C5-Fe1                  | -59.31 (18) | C4—Fe1—P2—C24  | 106.63 (16)  |  |
| C6-C1-C5-Fe1                  | 123.7 (3)   | C3—Fe1—P2—C24  | 132.17 (13)  |  |
| C3—Fe1—C5—C4                  | -37.50 (17) | C2—Fe1—P2—C24  | 172.44 (13)  |  |
| C2—Fe1—C5—C4                  | -80.64 (18) | C1—Fe1—P2—C24  | -156.64 (14) |  |
| C1—Fe1—C5—C4                  | -116.9 (2)  | P1—Fe1—P2—C24  | 13.55 (10)   |  |
| P1—Fe1—C5—C4                  | 76.86 (16)  | Cl1—Fe1—P2—C24 | -72.90 (10)  |  |
|                               |             |                |              |  |
| Hydrogen-bond geometry (Å, °) |             |                |              |  |

| D—H··· $A$                              | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
|-----------------------------------------|-------------|--------------|--------------|------------|
| C37—H37A···Cl1 <sup>i</sup>             | 0.97        | 2.66         | 3.525 (5)    | 149        |
| Symmetry codes: (i) $x-1$ , $y$ , $z$ . |             |              |              |            |

Fig. 1

